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Collaboration between human operators and unmanned aerial vehicles (UAV) is an emerging research area in UAV control, focused
on enhancing UAV performance and alleviating the workload of human operators. This paper proposes a dynamic event-triggered
cooperative control method for the optimal shared control of UAV. The proposed method formulates a cooperative non-zero sum
game between human operators and UAV, and the optimal shared control of UAV is achieved by solving the Nash equilibrium
of the game. The optimal shared control of UAV is approximated by the actor-critic algorithm, which learns the optimal control
policy from the historical operation data of UAV. Then a continuous and efficient shared mechanism is established to allocate the
relationship between optimal and human control input. To reduce the online computation burden of the optimal shared control in
the UAV system, a dynamic event-triggered mechanism is proposed to update the shared control input only when the event-triggered
condition is satisfied. The performance of the proposed method is evaluated by numerical simulations. The results show that the
proposed method could achieve optimal shared control of UAV with human operators efficiently and continuously compared with
conventional shared control methods.

Keywords: Unmanned aerial vehicles; cooperative game; optimal control; shared control; reinforcement learning.

1. Introduction

Unmanned aerial vehicles (UAV) are extensively utilized
in complex and emergent scenarios, including transporta-
tion [1,2], surveillance [3,4], search and rescue [5,6], owing
to their flexibility, cost-effectiveness, and operational effi-
ciency [7, 8]. The performance of UAV is constrained by
the workload of supervising human operators [9, 10], pre-
senting a significant challenge in UAV control. The conven-
tional control methods for UAV primarily rely on their au-
tonomy, wherein the human operator monitors the UAV’s
state and provides control inputs [11,12]. The UAV’s auton-
omy is designed to accomplish the intended trajectory and
task execution. Nevertheless, the autonomy of UAV may
struggle in complex and emergent scenarios, necessitating
human operator intervention to maintain safety and effi-
ciency [13,14]. The performance of UAV may decline when
human operators are required to intervene frequently, re-
sulting in an increased workload for these operators [15].
Improving UAV performance and reducing human opera-
tor workload necessitates the development of a cooperative
control method for optimal shared control of UAV.

The balance between UAV autonomy and human op-

erator intervention presents a significant challenge in UAV
control [16, 17]. Human operators supervise UAV opera-
tions and provide control inputs, while UAV autonomy
is designed to track desired trajectories and operate effi-
ciently [18, 19]. Recent studies have focused on the shared
control of UAV with human operators to enhance UAV
performance and alleviate the workload of human opera-
tors [20, 21]. The shared control of UAV is characterized
by the allocation of the relationship between the control
inputs of autonomy and human operators, wherein these
inputs are incorporated to facilitate UAV cooperative con-
trol tasks. Two primary methods exist for the shared con-
trol of UAV with human operators: the direct shared con-
trol method [22,23], which involves the direct combination
of control inputs from both autonomy and human opera-
tors; and the arbitration shared control method, which inte-
grates control inputs from autonomous systems and human
operators through an arbitration mechanism, such as fuzzy
logic-based arbitration [24,25], and learning-based arbitra-
tion [26,27], in which the human input will be transmitted
to the autonomous system for processing, resulting in a
comprehensive control input derived from the autonomy.
However, the direct shared control method may lead to in-
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stability in the UAV system, as it fails to account for the
interplay and relationship between the autonomy control
input and the inputs of human operators [28,29]. Also, the
arbitration shared control method may lead to inefficien-
cies in the UAV system, attributed to an inadequate and
non-continuous arbitration mechanism. Achieving optimal
shared control of UAV with human operators requires the
design of a cooperative control method that accounts for
the interplay between the autonomy’s control input and
that of human operators.

Optimal shared control of UAV in online settings
presents major difficulties, where calculation and imple-
mentation of optimal shared control between UAV and hu-
man operators demand massive computational resources
and communication bandwidth, which may lead to delays
in control input and an overall decrease in UAV perfor-
mance [30, 31]. Conventional optimal control approaches
for UAV primarily rely on offline optimal control methods,
wherein the optimal control is computed offline and then
executed online [32,33]. However, offline optimal control of
UAV might encounter difficulties with complex and emer-
gent scenarios, in which frequent human operator interven-
tion is necessitated [34,35], Consequently, the initially cal-
culated optimal control inputs may not remain optimal and
require online updates. To obtain optimal shared control
input of UAV with human operators, online reinforcement
learning (RL) and adaptive dynamic programming (ADP)
methods have been investigated to obtain the optimal con-
troller for UAV [36–38]. Event-triggered mechanisms have
been widely studied to lessen the online computational de-
mands of optimal shared control in UAV systems, updating
the control input merely when the event-triggered condition
is met [39–42]. Dynamic event-triggering rule has been in-
vestigated to enhance triggering performance and decrease
triggering frequency by adjusting the triggering threshold
adaptively based on system states [43, 44]. Therefore, it
is essential to develop a computationally and communica-
tively efficient method for calculating the optimal shared
controller to control UAVs optimally and efficiently.

Motivated by the aforementioned challenges, this pa-
per proposes a cooperative game-based optimal shared con-
trol method for UAV. The method formulates a cooper-
ative non-zero sum game between human operators and
UAV, where the optimal shared control is achieved by solv-
ing the Nash equilibrium of the game. The optimal control
policy is approximated through an actor-critic algorithm
that learns from historical UAV operation data. A novel
continuous and efficient shared mechanism is established
to allocate control authority between optimal and human
control inputs. To reduce the computational burden of on-
line controller approximation, a dynamic event-triggered
mechanism is proposed that updates the shared control in-
put only when specific triggering conditions are met. The
performance of the proposed method is evaluated through
extensive numerical simulations. Results demonstrate that
the proposed method achieves efficient and continuous opti-
mal shared control of UAV with human operators compared
to existing shared control approaches. The main contribu-

tions of this paper are summarized as follows:

(1) A cooperative game-based control method is proposed
for optimal shared control of UAV. The method for-
mulates a cooperative non-zero sum game between hu-
man operators and UAV, achieving optimal shared con-
trol by solving the Nash equilibrium of the game. A
novel shared mechanism is established to allocate the
relationship between optimal and human control in-
puts continuously and efficiently, improving upon tra-
ditional shared control methods [20,23,45,46].

(2) The optimal shared control of UAV is approximated
using RL methods, learning optimal control policies
from historical UAV operation data. The Nash equi-
librium of the cooperative game is achieved through
an actor-critic algorithm, demonstrating up to 79.23%
improvement in UAV performance compared to tradi-
tional optimal control methods [22,25,47–49].

(3) A dynamic event-triggered mechanism is developed to
reduce the online computational burden of optimal
shared control in UAV systems. This mechanism up-
dates the shared control input only when triggering
conditions are satisfied, while avoiding Zeno behav-
ior in the shared control input. The proposed method
demonstrates a 75.33% improvement in computational
efficiency compared to existing adaptive UAV control
methods [37,41,50].

The rest of this paper is organized as follows. In Sec-
tion I, preliminaries and the system description of UAV
are introduced. In Section II, the problem of optimal shared
control of UAV is formulated. Section III provides the main
result of cooperative game-based optimal shared control of
UAV. Section IV presents the stability analysis of the pro-
posed method. In Section V, we provide numerical simula-
tions to verify the effectiveness of proposed method. Finally,
Section VI concludes the paper.

2. Preliminaries: System Description of UAV

Fig. 1. The configuration of the UAV.

The human-UAV cooperation system is illustrated in
Fig. 1, which consists of an expert operator and a UAV.
The frame of the UAV is defined as the body frame with
the origin at the center of mass of the UAV. The body frame
is defined as xb pointing forward, yb pointing to the right,
and zb pointing up. The expert operator at the ground is
responsible for controlling the UAV to achieve the desired
trajectory, in which the expert operator observes the state
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of the UAV and sends the control input to the UAV in the
north-east-down (NED) frame. It should be noted that the
human operator is responsible for supervising the operation
of the UAV and sending the control input to the UAV, and
the frame of the human operator is defined as the gournd
frame with the origin at the position of the human opera-
tor, which is the same as the NED frame. To facilitate the
cooperative control design of the UAV with the human op-
erator, we consider constructing the dynamics model of the
UAV in the earth-fixed NED frame. Define the state vector
of the UAV as Ω = [x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇]⊤, where
x, y, and z are the position of the UAV in the earth-fixed
NED frame; ẋ, ẏ, and ż are the corresponding velocities of
the UAV; ϕ, θ, ψ, ϕ̇, θ̇, and ψ̇ denote the angular position
and angular velocity of roll, pitch, and yaw, respectively.
Consider the final control input implemented to the UAV
consists of both the control input of the autonomy and
the human operator, the control input of the autonomy is
defined as U = [ẋd, ẏd, żd, ψ̇d]

⊤, in which ẋd, ẏd, żd. To fa-
cilitate the modeling of the UAV dynamics, we assume that
the angles ϕ, θ, and ψ are small enough to apply the small
angle approximation. Based on the UAV model presented
in literature [15] , the dynamics model of the UAV in the
NED frame is described by

[
ẍ
ÿ
z̈

]
= −kt

m

[
ẋ
ẏ
ż

]
+

Rned
b

m

[
0
0

−F

]
+

[
0
0
g

]
(1)

s.t. Rned
b =

[
1 ϕθ − ψ θ + ϕψ
ψ ϕθψ + 1 θψ − ϕ
−θ ϕ 1

]

where m denotes the mass of the UAV, g represents the
gravitational acceleration, kt denotes the coefficient of aero-
dynamic drag, F represents the thrust force generated by
the UAV, and Rned

b denotes the rotation matrix that trans-
forms coordinates from the body frame to the earth-fixed
NED frame. The rotational dynamics of the UAV is de-
scribed by the Euler’s equation from literature [51] given
by



ϕ̈

θ̈

ψ̈


 =




Iyy−Izz
Ixx

θ̇ψ̇
Izz−Ixx
Iyy

ϕ̇ψ̇
Ixx−Iyy
Izz

θ̇ϕ̇


+




l
Ixx

τ1
l
Iyy
τ2

l
Izz
τ3


 (2)

where Ixx, Iyy, and Izz are the inertia of the UAV about the
x, y, and z axes, respectively. l is the distance from the cen-
ter of mass to the rotor. Following the approach in [52] , the
control inputs are defined as the desired velocities in x, y,
z directions and yaw rate, while the torques τi (i = 1, 2, 3)
applied to the UAV and the thrust force F are given by





τ1 = −hϕ1
ϕ̇+ hϕ2

(ϕd − ϕ)

τ2 = −hθ1 + hθ2 (θd − θ)

τ3 = hψ1

(
ψ̇d − ψ̇

)

F = mg +mhz1 (ż − żd)

(3)

where hϕ2
, hθ2 , hz1 , hϕ1

, hθ1 , and hψ1
are control gains of

the autopilot. Inspired by the autopilot command presented
in [53] , the autopilot inputs are the desired angles ϕd and
θd, which are typically expressed as inverse tangent func-
tions. Under the small angle assumption for ϕ, θ, and ψ,
the desired angles ϕd and θd can be efficiently approximated
using linear approximation from [54] . Consequently, the ap-
proximate desired angles ϕd and θd are given by





θd =
π (hy1 (ẏd − ẏ)ψ + hx1

(ẋd − ẋ))

4g + 4hz1 (żd − ż)
,

ϕd =
π (hx1 (ẋd − ẋ)ψ − hy1 (ẏd − ẏ))

4g + 4hz1 (żd − ż)

(4)

where hx1
, hy1 , hz1 , hϕ2

, hθ2 , hϕ1
, hθ1 , and hψ1

are control
gains of the autopilot.

Remark 2.1. Under the small-angle assumption for ϕ, θ,
and ψ, a linearized UAV model is derived for simplicity and
ease of analysis based on [15,51,52]. However, this approach
may be inadequate for capturing UAV behavior under high-
speed flight or aggressive maneuvers, and it can become in-
valid when no hover point exists (e.g., trajectory tracking).
For practical applications, the linearized approach should
be carefully verified through simulations or experiments,
as it may not hold for aggressive maneuvers or large at-
titude variations. The initial conditions of the UAV and
historical operational data is referred by the actual UAV
data from [15]. The model parameters are inspired by the
Pixhawk 4 autopilot system. The above practical consider-
ations are essential for the design and implementation of
the proposed method.

To formulate the cooperative game of the UAV and
human operator, the control input matrix G is assumed
to be the same for both UAV and human operator, which
means the input channel of the UAV and human operator is
the same. The control inputs implemented by the autono-
mation and human operator are denoted as Ua and Uh,
respectively, and the control input of the UAV is defined as
a function of both human and automation inputs, written
as U(t,Ω) = U (Ua,Uh). Firstly, we define the input U as
the sum of the control input of the autonomy and the con-
trol input of the human operator, in which the dynamics
model of the UAV could be written in the form of

Ω̇ = F (Ω) +G(Ω)U = F (Ω) +
∑

i=a,h

Gi(Ω)Ui (5)

where the dynamics matrix F (Ω) and control input ma-
trixes G(Ω), Ga(Ω) and Gh(Ω) are defined as

F (Ω) =



03×3 I3×3 03×3 03×3

03×3 K1 M1 03×3

03×3 03×3 I3×3 03×3

03×3 K2 M2 M3


Ω, Gi =



03×4

L1

03×4

L2


 (6)

where the matrices K1, M1, K2, M2, M3, L1, and L2 are
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defined as

K1 =




−kt
m 0 0
0 −kt

m 0
0 0 −hz1− kt

m


 , M1 =

[
0 −g 0
g 0 0
0 0 0

]
,

K2 =




0
πlhϕ2hy1
4gIxx

0
−πlhθ2hx1

4gIyy
0 0

0 0 0


 , M2 =




−lhϕ2
Ixx

0 0

0
−lhθ2
Iyy

0

0 0 0


 ,

M3 =




−lhϕ1
Ixx

0 0

0
−lhθ1
Iyy

0

0 0
−lhψ1

Izz


 , L1 =

[
0 0 0 0
0 0 0 0
0 0 hz1 0

]
,

L2 =




0
−πlhϕ2hy1

4gIxx
0 0

πlhθ2hx1
4gIyy

0 0 0

0 0 0
lhψ1

Izz




Assumption 2.2. As one of the cooperative game play-
ers, the observed state of the human operator to the UAV
is Ω̂h, the action of the human operator is Ûh. Assume the
following conditions hold for the observation and action of
the human operator, the communication and interaction
between the human operator and the UAV:

(1) Assuming the observation of the human operator to the

UAV is accurate and reliable, which means Ω̂h(t) ≈
Ω(t). It should be noted that the observation of the
human operator to the UAV is not perfect, and there
may be some errors in the observation. However, the
observing error is small enough to be ignored in the
following analysis.

(2) The ground station and UAV maintain a reliable,
low-latency communication link that enables real-time
communication between the human operator and the
UAV. The computation and communication delay be-
tween the human operator and the UAV is negligible,
which means the action of the human operator is im-
plemented to the UAV immediately as Ûh(t) ≈ Uh(t).

To copilot the UAV with human operators to achieve
optimal performance, it is essential to design an optimal
controller to track the desired trajectory.

3. Problem Formulation: Optimal Shared
Control of UAV

3.1. Formulation of optimal control

Table 1. Variables and their physical meanings in the UAV sys-
tem

Variable Physical Meaning

Position and Motion Variables:

x, y, z Position coordinates in NED frame (m)

ẋ, ẏ, ż Linear velocities in NED frame (m/s)

ϕ, θ, ψ Euler angles: roll, pitch, yaw (rad)

p, q, r Angular rates about body axes (rad/s)

ϕ̇, θ̇, ψ̇ Euler angle rates about world axes (rad/s)

ṗ, q̇, ṙ Angular accelerations about body axes (rad/s2)

Physical Parameters:

m Total mass of UAV (kg)

g Gravitational acceleration (m/s2)

Ixx, Iyy , Izz Principal moments of inertia (kg·m2)

kt Aerodynamic drag coefficient

l Distance from center of mass to rotor (m)

Forces and Moments:

F Total thrust force (N)

τ1, τ2, τ3 Control moments about body axes (N·m)

Rned
b Rotation matrix from body to NED frame

Control Variables:

Ua Control input from autonomous system

Uh Control input from human operator

U Combined control input of UAV

β Shared control allocation parameter

µk Symmetric saturation bound for control inputs

State and Performance Variables:

Ω Complete state vector of UAV system

Ωe Tracking error of system states

Qi State penalty matrices for tracking error

Rik Control input weighting matrices

Λik Control input penalty functions

To design the optimal shared controller for the UAV,
the problem of optimal control should be formulated. First,
the following quadratic cost function for player i can be de-
fined:

Vi(Ωe,Ua,Uh) =
∫ ∞

0

ri(e(τ),Ua(τ),Uh(τ)) dτ, ∀i ∈ {a, h}
(7)

where Ωe = Ω − Ωd is the tracking error of system states,
and the instantaneous reward function ri(Ωe,Ua,Uh) of the
i-th player in the cooperative non-zero sum game is defined
as:

ri(Ωe,Ua,Uh) = Ω⊤
e QiΩe +

∑

k=a,h

Λik(Uk), ∀i ∈ {a, h}

(8)

where Qi ∈ Rn×n, (i, k = a, h) is positive definite state
penalty matrices of tracking error Ωe for player i. To con-
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strain the control inputs of both the UAV and human oper-
ator, and inspired by the work in [55,56] , Λik(Uk) is defined
as penalty of the control input Uk to the i-th player in the
form of inverse hyperbolic tangent integral:

Λik(Uk) = 2µkRik

∫ Uk

0

tanh−1 (γU/µk) dγU (9)

where i, k = a, h, µk ∈ Rm×1 is the symmetric saturation
bound for player k’s control input satisfying −µk ≤ Uk ≤
µk, Rik ∈ Rm×m is the positive definite weighting matrix
that player i assigns to player k’s control input Uk. γU is an
integral variable. To develop the optimal controller for the
UAV, it is essential to evaluate the optimal value function
V∗
i (Ωe) and the optimal control input U∗

a (Ωe). To facili-
tate the succeeding analysis and controller design with the
dynamics (5), the following assumption and definition are
made for the non-zero sum game of the UAV and human.

Assumption 3.1. [57,58] Assume the following conditions
are satisfied for the augment dynamics (5):

(1) On a compact set Ω ∈ χ ∈ Rn, both F (Ω) and Gi(Ω)
are Lipschitz continuous with F (0) = 0, and Gi(Ω) sat-
isfied bounded condition ∥Gi(Ω)∥ ≤ GHi for all Ω ∈ χ.

(2) Cost matrix Qi and Rij are bounded, such that λQi ≤
∥Qi∥ ≤ λ̄Qi , λRij ≤ ∥Rij∥ ≤ λ̄Rij , where constants

λQi , λRij ≥ 0 and λ̄Qi , λ̄Rij > 0.

Definition 3.2. Consider the two-player non-zero sum
game between the UAV and human operator given in 5,
given a set of control input {U∗

a ,U∗
h}, a Nash equilibrium is

achieved if the following conditions are satisfied:

V∗
a(Ωe) = Va(Ωe,U∗

a ,U∗
h) ≤ Va(Ωe,Ua,U∗

h)

V∗
h(Ωe) = Vh(Ωe,U∗

a ,U∗
h) ≤ Vh(Ωe,U∗

a ,Uh)
(10)

The optimal value function V∗
i (Ωe) for player i is given as:

V∗
i (Ωe) = min

Ui(τ)∈ΩU

∫ ∞

t

ri(Ωe(τ),Ua(τ),Uh(τ))dτ (11)

where ΩU ∈ Rm×1 is the admissible set of control input.
To obtain the optimal value function (11), we introduce the
Hamilton function for the optimal control problem:

Hi(Ωe,Ua,Uh,∇V∗
i ) =Ωe

⊤QiΩe + Λia(Ua) + Λih(Uh)
+∇V∗⊤

i (F +GaUa +GhUh)
(12)

where ∇V∗
i = ∂V∗

∂Ωe
, (i = a, h) is the gradient of optimal

value function. Following the extreme condition of the value
function (11) and the Hamilton function (12), the optimal
control input for player i could be derived as:

U∗
i (Ωe) = argmin

Ui(τ)∈ΩU

Hi

=− µi tanh

(
R−1
ii G

⊤
i

2µi
∇V∗

i

)
, ∀i ∈ {a, h} (13)

Combining the optimal control input (13) with the
Hamilton function (12), the HJB equation is obtained as:

0 =Ωe
⊤QiΩe + Λia(U∗

a ) + Λih(U∗
h)

+ (∇V∗
i )

⊤(F +GaU∗
a +GhU∗

h), ∀i ∈ {a, h}
(14)

The optimal value function (11) and the correspond-
ing saturated optimal control input (13) could be derived
by solving the HJB equation (14). Now the problem of op-
timal control of the UAV is formulated. However, solving
the HJB equation (14) is still a complex and challenging
problem due to its nonlinearity and high dimensionality.
The next section will introduce a novel shared mechanism
that collects and allocates control inputs from the human
operator and the optimal controller of autonomy.

3.2. Shared control allocation

In this subsection, to achieve the closed-loop optimal shared
control of UAV, a novel shared mechanism is established,
which allocates the relationship between optimal and hu-
man control inputs. Given the human control input Uh and
the control input Ua produced by the optimal controller of
autonomy, the shared control input U is defined as:

U = Ua + βUh (15)

where β ∈ [0, 1] is the shared control parameter. To achieve
the optimal shared control of the UAV, methods such as
Maxwell’s Demon Algorithm (MDA) from [23,45] are stud-
ied to set parameter β by judging if the human control
input is in the same direction as the optimal control input.
However, the MDA is a method similar to the switch con-
trol method, which is not continuous and may cause the
UAV system to be unstable. In this paper, a novel shared
mechanism is proposed to allocate the relationship between
the optimal control input and human control input. The ra-
tio of the optimal control input and human control input
is defined as:

β =





0, if η ≥ β1
1, if η ≤ β2
η−β1

β2−β1
, otherwise

(16)

where η is the angle between the vector of optimal control
input and the vector of human control input. β1 and β2 are
the threshold values. In this paper, we choose β1 = 2π/3
and β2 = π/2. The control allocation mechanism ensures
continuity of the control signal U(t), preventing sudden
jumps in actuation commands. While not necessarily differ-
entiable at switching points where β(t) changes, this con-
tinuity property is sufficient to maintain system stability
and performance, as demonstrated in our experimental re-
sults. The continuity of U(t) prevents abrupt changes in
UAV commands, while the potential non-differentiability
at switching points has minimal impact on actual system
behavior due to the natural mechanical filtering of the UAV
dynamics.
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6 S. Xue et al.

Fig. 2. The mechanism of shared control

The shared mechanism is illustrated in Fig. 2, where
the blue slash-dot vector is the optimal control input of
the autonomy, the green dotted vector indicates the hu-
man control input. The angle between the optimal control
input and the human control input is denoted as η. The
overall shared control input is constructed by blending the
optimal control input and the human control input.

Remark 3.3. when angle η is greater than β1, the shared
control parameter β is set to 0, the UAV are controlled by
autonomy. When angle η is less than β2, the shared control
parameter β is set to 1, the UAV are controlled by both
the autonomy and the human operator fully. When angle
η is between β1 and β2, the shared control parameter β is
set to the ratio of angle η to the threshold values β1 and
β2. Compared with existing MDA methods [23,45], the pro-
posed shared mechanism is able to allocate the relationship
of control input continuously and effectively, which judges
the intention of human operator and autonomy. The contin-
uousness of the control input is guaranteed by the setting
of intermediate transition zones.

To learn from the human operator’s maneuver data and
achieve optimal shared control of the UAV, the optimal
controller is approximated by the actor-critic algorithm us-
ing historical pilot operation data in the next section.

4. Main results: Cooperative Game-based
Optimal Shared Control of UAV

In this section, the design of the actor-critic is presented
to solve the optimal shared control problem of the UAV.
First, the optimal value function and the optimal control
policy are reconstructed using the actor-critic algorithm.
With the reconstructed optimal value function and control
policy, the bellman error is established. By minimizing the
bellman error, the actor-critic neural networks (NNs) are
trained to obtain the optimal value function and the opti-
mal control policy.

4.1. Actor-critic design

For the approximation of the optimal value function, a
structure of actor-critic NNs is developed. The optimal
value function for player i is reconstructed by:

V∗
i (Ωe) =W⊤

ciφci(Ωe) + εci(Ωe), ∀i ∈ {a, h} (17)

where Wci ∈ Rnφci×1 is the weights of critic NN, εci and
εai are the construction errors of the actor-critic NNs. To
obtain the optimal control input, the actor NNs are utilized
to approximate the optimal control policy:

U∗
i (Ωe)=−µitanh

(
R−1
ii G

⊤
i

2µi

(
∇φ⊤

aiWai+∇ε⊤ai
))

, ∀i ∈ {a, h}
(18)

where Wai ∈ Rnφai×1 are the weights of the actor NNs. In
the practice, the ideal weights Wci and Wai are unknown,
estimated weights are utilized to approximate the optimal
value functions and the control inputs:

V̂i(Ωe) =Ŵ⊤
ciφci(Ωe), ∀i ∈ {a, h} (19)

Ûi(Ωe) =− µi tanh

(
R−1
ii G

⊤
i

2µi
Ŵ⊤
aiφai

)
, ∀i ∈ {a, h} (20)

where Ŵci ∈ Rnφ×1 are the estimated weights of the critic
NN for the leader and the follower. Ŵai are the estimated
weights of the actor NN. According to the proposed shared
mechanism (15) in the last section, the shared control in-
put is obtained by blending the optimal control input and
human control input:

Û = Ûa + βÛh (21)

where Û is the shared optimal control input implementing
to the UAV, Ûa and Ûh are the estimated control inputs of
the autonomy and the human operator derived from (20),
the shared control parameter β is set by the shared mech-
anism (16).

By inserting the obtained shard control input into the
Hamilton function, the shared Bellman error is obtained:

δi(Ωe, Ŵci, Û) =∇V̂⊤
i

(
F +GÛ

)
+ r(Ωe, Û)

=Ŵ⊤
ci∇φci

(
F +G(Ûa + βÛh)

)
+Ωe

⊤QiΩe

+ Λia(Ûa) + Λih(βÛh), ∀i ∈ {a, h} (22)

where δi is the shared Bellman error. The shared Bellman
error is utilized to train actor-critic NNs and approximate
optimal value functions and control inputs.

4.2. Online value function approximation

In this subsection, weights of actor-critic NNs are up-
dated online by minimizing the Bellman error. The his-
torical stack data set {Û(t), δi(t), {Û j(t), δji (t)}Nj=1} is col-
lected without extrapolation but stored as a stack, where
{Û j(t), δji (t)} is the jth historical stored data collection.
The weights of actor-critic NNs are learned by minimizing
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Fig. 3. The proposed cooperative optimal shared control algorithm structure.

a defined squared loss function E = δ⊤i δi +
∑N
k=1 δ

k
i
⊤δki .

Accordingly, a concurrent gradient descent update law is
utilized to update the weights of the critic NN:

˙̂Wci = − kci1δiζi(
ζ⊤i ζi + 1

)2 − kci2
N

N∑

k=1

δki ζ
k
i(

ζk⊤i ζki + 1
)2 , ∀i ∈ {a, h}

(23)
where kcij > 0 (i = a, h, j = 1, 2) are the learning rates of

critic NN. The regression vectors ζi = ∇φ⊤
ci(Ωe)(F +GÛ),

ζki = ∇φ⊤
ci(Ωe

k)(F +GÛk), where Ωe
k is the kth historical

data sample. For the actor NN, the weights are updated by
a gradient projection update law:

˙̂Wai = Γ
{
−kaiFai

(
Ŵai − Ŵci

)}
, ∀i ∈ {a, h} (24)

where kai > 0 is the learning rates of actor NN. Fai ∈
Rnφ×nφ is positive definite matrices for the updating of
actor NN. Γ is a projection operator to ensure the actor
NN weights are bounded. Then the online learning of the
optimal value function and control input are achieved by
actor-critic NNs.During the cooperation task of the UAV
and human operator, large amounts of historical data are
collected and stored in the experience replay stack, the com-
putational load of controller approximation and communi-
cation burden are the key challenges for the online imple-
mentation of the proposed algorithm. To solve this prob-
lem, a computation and communication-efficient dynamic
event-triggering rule is proposed in the next section.

4.3. Dynamic event-triggering rule

To reduce the computational load of the controller approx-
imation and the communication burden of the human-UAV
system, a dynamic event-triggering rule is proposed to trig-
ger the controller approximation and the communication of
the human-UAV system. First, a dynamic variable η is de-
fined to store the information of the triggering event, which
is calculated and updated utilizing the following dynamic

equation:

η̇ = −λη +((1− θ)λmin(Qa)∥Ωe∥2 −
G2
MKζ
2

∥∥∥Ŵai

∥∥∥
2

∥ej∥2)
= −λη + Λ(Ωe, ej) (25)

where ej = Ωe −ΩK is the error between the current state
and the last triggered state. The initial condition of the dy-
namic variable satisfies η(0) ≥ 0. λ > 0 is the decay rate of
the dynamic variable, which is the key parameter to con-
trol the triggering event. θ ∈ [0, 1] is the threshold value
of the triggering event, which is an adjustable parameter
to control the triggering event. λmin(Qa) is the minimum
eigenvalue of automation state penalty matrix Qa. GM is
the norm of automation control input matrix Ga. Kζ is a
positive upper bounded parameter, which is defined as

Kζ =
(
G2
φG2

M + G2
gφ

2
dM

) ∥∥R−1
aa

∥∥2 (26)

where Gϕ and Gg are the Lipschitz constants of the dy-
namic matrix F and the control input matrix G. With the
definition of the dynamic variable η (25) and its dynamic
equation, the next triggering time is obtained by the fol-
lowing dynamic event-triggering rule:

τj=inf
{[
t ∈ R+

0 | t > τj−1

]
∩[η(t) + α

×
(
(1− θ)λmin(Qa)∥Ωe∥2 −

G2
MKζ
2

∥∥∥Ŵai

∥∥∥
2

∥ej∥2 ≤ 0

]}

=inf
{[
t ∈ R+

0 | t > τj−1

]
∩[η(t) + αΛ (Ωe, ej) ≤ 0]

}

(27)

where α is a positive constant designed to adjust the trig-
gering frequency. Note that when α → 0, the triggering
rule is equivalent to the continuous time-triggering rule.
when α→ ∞, the triggering rule is equivalent to the event-
triggering rule. Then the corresponding triggered control
input of the automation is obtained by:

Û(t) =
{
Ûa(τj) + β(τj)Ûh(τj), if t ≥ τj
Ûa(τj−1) + β(τj−1)Ûh(τj−1), otherwise

(28)
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where τj is the jth triggering time caculated by the dy-
namic event-triggering rule (27). The proposed dynamic
event-triggering rule is able to reduce the computational
load of the controller approximation and the communica-
tion burden of the human-UAV system. Then the proposed
cooperative game-based optimal shared control UAV algo-
rithm is able to achieve the optimal shared control of the
UAV with the human operator.

Algorithm 4.1. Cooperative game-based optimal shared
control UAV algorithm

1: Initialize parameters:

• Weights of actor-critic NNs Ŵci, Ŵai.
• Triggering parameters α, λ, θ, η.
• Historical stack {Û(t), δi(t), {Û j(t), δji (t)}Nj=1}.

2: while t < Tend do
3: Collect: human control input Uh, UAV state Ω
4: if Triggering condition (27) satisfied then
5: Compute optimal strategies:

• Optimal value function V̂i via (11)

• Optimal control input Ûa via (13)

• Optimal shared control Û(τj) via (21)

6: Evaluate Bellman errors from (22):

• Human bellman error δ1(Ωe, Ŵc1, Û) via (22)

• Autonomy bellman error δ2(Ωe, Ŵc2, Û) via
(22)

7: Update experience replay buffers:

• Human: [Û , δ1, [Û j , δj1]Nj=1]

• Autonomy: [Û , δ2, [Û j , δj2]Nj=1]

8: Update actor-critic weights:

• Critic weights via (23)
• Actor weights via (24)

9: end if
10: Apply control Û(τj) to UAV system
11: Update dynamic variable η by (25)
12: end while

The detailed algorithm is shown in Algorithm 4.1. The
detailed architecture of the proposed cooperative game-
based optimal shared control UAV algorithm is shown in
Fig. 3. The proposed algorithm is able to formulate a non-
zero sum game between the UAV and human operator, in
which the control input of the expert is collected and shared
with the autonomy, and the autonomy formulates the coop-
erative game to obtain the optimal control input, then an
innovative shared mechanism (15) is proposed to allocate
the relationship between the optimal control input and hu-
man control input continuously and efficiently. The actor-
critic NNs are trained to approximate the optimal value

function and the optimal control input by minimizing the
shared Bellman error. In the next section, the stability anal-
ysis of the closed-loop system and the theoretical analysis
of the dynamic event-triggering rule are presented.

5. Theoretical Analysis

5.1. Stability analysis of the closed-loop
system

In this subsection, with the help of the Lyapunov stabil-
ity theory, the closed-loop system states and the actor-
critic NN errors are proved to be ultimate uniform bounded
(UUB) under the proposed cooperative optimal shared con-
trol scheme. First, two assumptions are given for the proof.

Assumption 5.1. [43, 59] Assuming that the following

parameters and operators are bounded: ∥Ŵci∥ ≤ WHi,
∥ζi(Ωe)∥ ≤ ζHij , ∥∇ζi(Ωe)∥ ≤ ζD,Hij , ∥φ(Ωe)∥ ≤ φHi,
∥∇φ(Ωe)∥ ≤ φD,Hi, ∥ε(Ωe)∥ ≤ εHi, ∥∇ε(Ωe)∥ ≤ εD,Hi,

Assumption 5.2. [60] Consider the online collected data
and extrapolated dataset for updating the weights. The fol-
lowing persistent excitation conditions are satisfied:





∫ t+T
t

ζi(τ)ζi(τ)
⊤

(ζi(τ)⊤ζi(τ)+1)2
dτ ⩾ ϕ1,iIK

inft∈Rt≥t0

∑N
k=1

ζki (t)ζ
k
i (t)

⊤

N(ζki (t)⊤ζki (t)+1)
2 ⩾ ϕ2,iIK

(29)

where ζi(τ) and ζki (t) are the regression vectors, IK is an
identity matrix with appropriate dimensions, and at least
one of the non-negative constants ϕ1,i, ϕ2,i is strictly posi-
tive.

Based on the design of input (20), it could be obtained that:

∥∥∥U∗
i (Ωe)− Ûi(Ωe)

∥∥∥
2

≤ ζiW̃
⊤
aiW̃ai +Πui (30)

where W̃∗i = Ŵ∗i −W∗i is the weights estimation error of
NNs, ζ is a upper bound related with φH , φD,H , ζHi and
ζD,Hi, Πu is a upper bound related to εD,H . The Bellman
error δi is abbreviated as:

δi =− ζ⊤i W̃ci +
1

4
W̃aiGζiW̃ai +

1

4
W̃ajGζjW̃aj

+∆i(Ωe) + ξHi, (31)

δki =− (ζki )
⊤W̃ci +

1

4
W̃aiG

k
ζiW̃ai +

1

4
W̃ajG

k
ζjW̃aj

+∆k
i (Ωe), (32)

where i, j = a, h, j ̸= i, Gζh = ∇φ⊤
ahGhR

−1
hhG

⊤
h∇φ⊤

ah,

Gζa = β2∇φ⊤
aaGaR

−1
aaG

⊤
a∇φ⊤

aa, G
k
ζi

= Gζi(Ωe
K), and

∆i,∆
k
i : Rn → R are uniformly bounded on χ, ∥∆i∥ and∥∥∆k

i

∥∥ decrease as ∥∇εi∥ and ∥∇Wi∥ decrease. The stabil-
ity analysis of closed-loop system state and network weight
estimation errors is given in the following theoretical result.
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Theorem 5.3. Consider the augmented system dynamics
(5) under the proposed cooperative optimal shared con-
trol scheme. Let Assumptions 3.1, 5.1 and 5.2 be satisfied.
The actor-critic NNs weights are updated according to the
adaptive laws (23) and (24), and the control input is ap-
proximated via (20). Then the closed-loop system states Ω

and the network weight estimation errors [W̃⊤
ci , W̃

⊤
ai ]

⊤ will
be ultimately uniformly bounded (UUB), provided that:

∥Ξ∥ ≥
√

Υres

λmin(M)
(33)

where Ξ =
[
Ω⊤, W̃⊤

c1, W̃
⊤
a1, W̃

⊤
c2, W̃

⊤
a2

]⊤
denotes the aug-

mented state vector, Υres is a positive constant related to
the system parameters and the learning rates, λmin(M) is
the minimum eigenvalue of the system matrix M.

Proof. Let us analyze the stability based on Lyapunov
stability theory. Consider the following Lyapunov function
candidate:

V (Ξ) =
∑

i,j=a,h
j ̸=i

{
V∗
i +

1

2
W̃⊤
ci W̃ci +

1

2
W̃⊤
aiW̃ai

}
(34)

Taking the time derivative of the Lyapunov function
along the trajectories of system (5), with the optimal value
functions (11) and optimal control inputs (13), yields:

V̇ =
∑

i,j=a,h
j ̸=i

{
∇V∗

i (F +GiUi +GkUk) + W̃⊤
ci

˙̂W⊤
ci + W̃⊤

ai
˙̂W⊤
ai

}

(35)

Substituting the (∇V∗
i )

⊤
F (Ω) term from (31) and

(32) into (35), and employing the Bellman errors from (31)
and (32), the derivative can be rewritten as:

V̇=
∑

i=a,h

{
+ W̃⊤

ai

[
−kaiFai

(
Ŵai − Ŵci

)]
− Ω⊤QiΩ

− W̃⊤
ci

[
−kci1

ζi
ρi

(
−ζ⊤i W̃ci +∆i + ξHi

)]
−

∑

j=a,h

Λij(Uj)

− W̃⊤
ci

[
−kci1

ζi
ρi

(
1

4
W̃⊤
aiGζiW̃ai +

1

4
W̃⊤
ajGζjW̃aj

)]

− W̃⊤
ci

[
−kci2
N

N∑

k=1

ζki
ρki

(
1

4
W̃⊤
aiG

k
ζiW̃ai +

1

4
W̃⊤
ajG

k
ζjW̃aj

)]

− W̃⊤
ci

[
−kci2
N

N∑

k=1

ζki
ρki

(
−(ζki )

⊤W̃ai +∆k
)]}

(36)

Substitute inequality (30), then employing Young’s in-
equality [28] and assumptions 3.1-5.2, the derivative can be
rewritten as:

V̇ ≤ −Ξ⊤MΞ +Υres

where

M =




m1 0 0 0 0
0 m2 0 0 0
0 m3 m4 0 0
0 0 0 m5 0
0 0 0 m6 m7




is a positive definite matrix, and m1 = λQa + λQh ,

m2 = 1
2kc11ζ1ζ

T
1 + 1

2kci2ϕ2IK, m3 = −Fa1IK, m4 =

Fa1IK − λ̄RaaζuIK, m5 = 1
2kc21ζ2ζ

T
2 + 1

2kci2ϕ2IK, m6 =
1
2kc21ζ2ζ

T
2 + 1

2kci2ϕ2IK, m7 = Fa2IK − λ̄RhhζuIK, and Υres

is a residual defined as:

Υres=
∑

i,j=a,h
j ̸=i

{
kci1
2

[
1
4W̃

⊤
aiGζiW̃ai +

1
4W̃

⊤
ajGζjW̃aj +∆i

]2

+
kci2
2

[
1
4W̃

⊤
aiGζi,kW̃ai +

1
4W̃

⊤
ajGζj ,kW̃aj +∆k

]2

+ λ̄RiiΠui + ζjW̃
⊤
ajW̃aj

}
.

The stability analysis follows similar approaches as in re-
cent ADP literature [37, 43, 48, 55, 56, 61] , but extends to
the cooperative game framework. Therefore, when the pa-
rameters and initial conditions are properly chosen, an ap-
propriate positive definite matrix M could be chosen to
ensure that the derivative of the Lyapunov function V̇ be-
comes negative definite. This ensures that the closed-loop
system state Ω and the network weight estimation errors
[W̃⊤

c1, W̃
⊤
a1, W̃

⊤
c2, W̃

⊤
a2]

⊤ are ultimately uniformly bounded
(UUB) when the condition (33) is satisfied. This result con-
firms the stability and convergence of the proposed coop-
erative optimal shared control scheme. This completes the
stability proof for the proposed cooperative optimal shared
control scheme.

Remark 5.4. This proof satisfies the classical Lyapunov
stability conditions where V(Ξ) is positive definite, V̇ is

negative definite when ∥Ξ∥ >
√

Υres/λmin(M), and the
residual term Υres provides an ultimate bound. While the
current residual bound is sufficient to prove UUB stabil-
ity, the bound could be improved by: (i) utilizing tighter
inequalities beyond Young’s inequality; (ii) exploiting the
cooperative game structure to reduce conservatism; and
(iii) considering additional cross-coupling terms in the Lya-
punov function.

5.2. Theoretical Results of the Dynamic
Event-Triggering Rule

In this subsection, the theoretical results of the dynamic
event-triggering rule are presented.

Theorem 5.5. Consider the proposed dynamic event-
triggering rule (27). Under the proposed control scheme,
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the Zeno behavior is avoided and there exists a positive
minimum inter-triggering interval given by:

∆tmin =
K

G(K + 1)

where K =

√
2(1−θ)λmin(Qa)

G2
MKζ∥Ŵai∥2 and G =

G2
M

2∥Raa∥φdM
∥∥∥Ŵai

∥∥∥ +

Gf .

Proof. Based on the dynamics of variable η in (25), the
triggering event occurs when {η(t) + αΛ(Ωe, ej) ≤ 0}.
Therefore, the triggering condition (27) can be rewritten
as:

(1− θ)λmin(Qa)∥Ωe∥2 ≥ G2
MKζ
2

∥∥∥Ŵai

∥∥∥
2

∥ej∥2 (37)

From the controller design (13), the control input

Ûi(Ωe) is bounded by:

∥∥∥Ûi (Ωe)
∥∥∥ ≤ ∥µi∥ (38)

Using the control input bound (38), the triggering con-
dition (37) leads to:

∥Ω̇e∥ ≤Gf∥Ωe∥+ GM∥µi∥ ∥Ωe + ej∥ (39)

Let H(t) = ∥ej/Ω∥ denote the ratio between error and
state norms. For any t ∈ [τj , τj+1), taking the time deriva-
tive of H yields:

Ḣ =
d

dt

√
e⊤j ej√
Ω⊤
e Ωe

≤ ∥Ω̇e∥∥ej∥
∥Ωe∥∥Ωe∥

+
∥Ω̇e∥
∥Ωe∥

≤ G(1 +H)2

When Ḣ = G(1+H)2, the growth rate of H reaches its
maximum. GivenH(0) = 0, solving the triggering condition
(37) yields H(τ) = τG/(1− τG). Therefore, the minimum
inter-triggering interval is ∆tmin = K

G(K+1) , which proves

the absence of Zeno behavior in the system.

Table 2. Parameters of the UAV and update law.

Parameter Value

Initial:

Ω0 = [−2.1975, 0.7529,−0.4799, 0.1028,

−0.0079,−0.0572,−0.0013, 0.0270,

0.5237,−0.0448, 0.0315,−0.0584]⊤,

µa = µh = 1.0, Wc1 = Wc2 = 112 + rand(12),

Wa1 = Wa2 = 112 + rand(12),

DET:
λ = 15, θ = 0.2, GM = 300, Kζ = 0.1,

η(0) = 0.3, α = 0.1,

ADP:

Raa=Rhh=Rah=Rha=50diag([3, 1, 0.5, 1]),

Qa=Qh =diag([10, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 0]),

kca1 = kch1 = 0.001, kca2 = kch2 = 0.1,

kaa1 = kah1 = 0.01, Fa = Fh = 3,

UAV:

m = 0.579902kg, g = 9.81 ·m/s2,

Ixx = 0.002261kg ·m2,Iyy = 0.002824kg ·m2,

Izz = 0.002097kg ·m2

Model:

hx1 = −5.25, hy1 = −5.25, hz1 = 3, kt = 0.01

hϕ2
= 3.50, hθ2 = 3.50, hψ2

= 0.35,

hϕ1
= 0.40, hθ1 = 0.40, hψ1

= 0.10,

6. Numerical Simulations

In this subsection, the proposed cooperative game-based
shared optimal control algorithm is verified by numerical
simulations, where the dynamics of the UAV system is
given by (1). The UAV system is controlled by the pro-
posed cooperative game-based shared optimal control algo-
rithm, where the shared control input is calculated by (21).
To simulate the control input, the actual control effect of
the human operator is implemented by a LQR autopilot
controller, in which the simulated signals of the human op-
erator are given the control input solved by the LQR al-
gorithm with the cost function V = Ω⊤QhhΩ + U⊤

h RhhUh.
The detailed parameters of the UAV and update law are
shown in Table 2. The simulator for this example is imple-
mented in Simulink MATLAB R2023b on a Windows PC
with an Intel Core i3-12100 CPU with 4 cores and 24 GB
RAM. The time step of the simulation is set to ∆t = 10−5

seconds, and simulation time is set to Tend = 30 seconds.
The desired position of the UAV is set as pd = [0, 0,−1.5]⊤,
which means the desired state of the UAV is set as Ωd =
[0, 0,−1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤.

The historical data used for training the RL-based op-
timal shared controller could be found in [62], which is col-
lected from a XILO Phreakstyle Freestyle frame equipped
with a Pixhawk 4 flight controller in an indoor OptiTrack
motion capture lab, where sensor data from IMU and con-
trol inputs are recorded at 40 Hz and fused using a Kalman
filter for reliable state estimation [15].

To evaluate the performance of the proposed algo-
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rithm, the following three methods are compared:

(1) Proposed: The proposed cooperative game-based
shared optimal control algorithm.

(2) NZS: Non-zero sum-based adaptive dynamic program-
ming control method in literature [61] .

(3) MDA: Maxwell’s demon algorithm-based shared con-
trol method in literature [23] .

The detailed update parameters for the ’NZS’ and ’MDA’
methods are set to the same as our proposed method, which
is reasonable and fair for the comparison. The control in-
puts of the ’NZS’ could be represented by the following
equation:

UNZS = Ûa + Ûh (40)

where Ûa and Ûh are the approximated control inputs of the
automation and human operator, respectively. It should be
noted that both of them are approximated by the actor
NNs in the ’NZS’ method, which could not be achieved in
real-world applications due to the involvement of the hu-
man operator. The control inputs of the ’MDA’ could be
represented by the following equation:

UMDA = Ûa + βMDAUh

βMDA =

{
1, if Ua · Uh ≥ 0
0, otherwise

(41)

where Ûa is the approximated control input of the automa-
tion, which is approximated by the actor NNs in the ’MDA’
method, and Uh is the control input of the human opera-
tor, which is calculated by the LQR autopilot controller.
The βMDA is the cooperation factor in the ’MDA’ method,
which is determined by the sign of the dot product of the
control inputs of the automation and human operator, in
other words, if the inputs of the automation and human
operator are in the same direction, the βMDA is set to 1,
otherwise, the βMDA is set to 0.

UAV

Fig. 4. 3-dimensional trajectory of the UAV system.

0 5 10 15 20 25 30
Time [s]

-0.5

0

0.5

1

Fig. 5. Simulation results of human control input.

0 5 10 15 20 25 30
Time [s]

-0.5

0

0.5

Fig. 6. Simulation results of automation control input.

0 5 10 15 20 25 30
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0

100

200
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-1

0

1

2
10-3

Fig. 7. Simulation results of shared Bellman errors.

6.1. Basic stabilization performance

The simulation results of the proposed cooperative game-
based shared optimal control algorithm are shown in Fig. 4-
9. The 3D trajectory of the UAV system is shown in Fig. 4,
where the UAV achieves position stabilization continuously
and efficiently under the proposed algorithm with only lim-
ited overshoot. The control inputs approximated by the ac-
tor NNs are shown in Fig. 5 and Fig. 6. The control inputs
remain bounded by the saturation value µa = µh = 1.0,
and demonstrate smooth and continuous behavior under
the shared mechanism with minimal chattering. The Bell-
man errors of the cooperative non-zero sum game are shown
in Fig. 7, where both errors demonstrate fast convergence to
small values (less than 0.1) under the proposed algorithm.

The weights of the actor-critic NNs are shown in Fig.
6.1 and Fig. 8. Fig. 6.1 shows the weights of the critic NNs
and Fig. 8 shows the weights of the actor NNs. All weights
demonstrate stable convergence behavior and remain ulti-
mately uniformly bounded under the proposed algorithm.
The UAV system states are shown in Fig. 9 (a)-(d), where
the UAV achieves precise position stabilization with sat-
isfactory transient performance under the proposed algo-
rithm. The final control input of the human operator is
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simulated using an LQR autopilot controller to emulate re-
alistic human control behavior.

0 5 10 15 20 25 30
Time [s]

-4

-2

0

2

4

(a)Critic NN 1 weights

0 5 10 15 20 25 30
Time [s]
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-1

0

1
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3

(b)Critic NN 2 weights
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-1

0
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3

(c)Actor NN 1 weights

0 5 10 15 20 25 30
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-1

0
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2

3

(d)Actor NN 2 weights

Fig. 8. Simulation results of actor-critic NN weights.

The dynamic event-triggering performance is illus-
trated in Fig. 9(e) and Fig. 9(f). The triggering mechanism
achieves a mean triggering period of ∆tmin = 0.0040 sec-
onds with a total of Ntrigger = 7401 triggering events. The
minimum inter-event time remains strictly positive, con-
firming the absence of Zeno behavior. Compared to time-
triggered methods [40] with ∆tmin = 0.001 seconds, the
proposed dynamic event-triggering rule reduces the num-
ber of triggering events by 75.33% while maintaining con-
trol performance. This demonstrates the effectiveness of our
approach in balancing control performance and computa-
tional efficiency. The simulation results validate that the
proposed cooperative game-based optimal shared control
algorithm can achieve precise position stabilization with re-
duced computational load and event triggers while ensuring
continuous human-UAV cooperation.

UAV

UAV UAV

Fig. 10. Comparison results of the UAV trajectory.

6.2. Comparison of the proposed method
with existing methods

The simulation results of the comparison between the pro-
posed cooperative game-based shared optimal control al-
gorithm and the existing ’NZS’ and ’MDA’ methods are
shown in Fig. 10-13. The 3-dimensional trajectory compar-
ison of the UAV system is shown in Fig. 10, where the
proposed cooperative game-based shared optimal control
algorithm achieves a better performance in controlling the
UAV system trajectory than the existing MDA method.
The ’MDA’ method stabilizes the UAV system in a twisted
trajectory, which is not smooth enough for the UAV system
control and will may cause the UAV system to be unsta-
ble in real-world applications. The ’NZS’ method achieves a
smoother trajectory than the ’MDA’ method, but it doesn’t
achieve UUB of the UAV system position state x under
the same control parameters setting, also, compared with
the ’NZS’ method, the proposed cooperative game-based
shared optimal control algorithm achieves a smoother and
faster performance. The main result of the comparison is
shown in Fig. 11-12, where the proposed cooperative game-
based shared optimal control algorithm outperforms the ex-
isting MDA method in controlling states of x, z, Vx, Vy, ϕ,

θ, ψ, ϕ̇, θ̇, and ψ̇.
The detailed comparison of the control input is shown

in Fig. 13(a)-(d), where the proposed cooperative game-
based shared optimal control algorithm achieves smoother
control input than the existing MDA method. It should
be noted that the ’NZS’ method is the perfect non-zero
sum control case, which is not practical in real-world ap-
plications due to the involvement of the human opera-
tor. Compared with the ’NZS’ method, the proposed con-
trol algorithm achieves a similar performance in controlling
the UAV system, and in the meantime, the ’NZS’ method
doesn’t achieve UUB of the UAV system position state x
under the same ADP parameters setting. which is a criti-
cal requirement for the UAV system control and will cause
the UAV system to be unstable in real-world applications.
The comparison results of the Bellman errors are shown in
Fig. 13(e)-(f), where the Bellman of the proposed method
is more stable and converges to a smaller value than the
’NZS’ and ’MDA’ methods.

Five quantitative metrics are introduced to evaluate
the performance of different approaches as follows:

(1) State smoothness index (SSI)

SSI=

∫

T

∥∥∥∥
d3X

dτ3

∥∥∥∥
2

dτ (42)

which is the mean-square third-order derivative of UAV
states.

(2) Attitude tracking error (ATE)

ATE=

∫

T

∥Θ−Θd∥2 dτ (43)

where Θ is the angle of the UAV and Θd is the desired
angle of the UAV.
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(a)Position (b)Velocity (c)Attitude

(d)Angular velocity
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Time [s]
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3
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0

0.5

1
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(e)Triggering threshold
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0
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10-3

(f)Triggering period

Fig. 9. Simulation results: (a)-(d) UAV system states; (e)-(f) Triggering mechanism.

(a)Comparison of position x (b)Comparison of position y (c)Comparison of position z

(d)Comparison of velocity Vx (e)Comparison of velocity Vy (f)Comparison of velocity Vz

Fig. 11. Comparison results of position, and velocity.

(3) Position tracking error (PTE)

PTE=

∫

T

∥p− pd∥2 dτ (44)

where p is the angle of the UAV and pd is the desired
position of the UAV.

(4) Accumulated Control energy (ACE)

ACE=

∫

T

∥∥∥Û
∥∥∥
2

dτ (45)

where Û is the control input imposed on the UAV.
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(a)Comparison of attitude ϕ (b)Comparison of attitude θ (c)Comparison of attitude ψ

(d)Comparison of ang velocity ϕ̇ (e)Comparison of ang velocity θ̇ (f)Comparison of ang velocity ψ̇

Fig. 12. Comparison results of attitude, and angular velocity.

(a)Comparison of input 1 (b)Comparison of input 2 (c)Comparison of input 3

(d)Comparison of input 4 (e)Comparison of Delta 1 (f)Comparison of Delta 2

Fig. 13. Comparison results of the control input and delta.

(5) Overall accumulated cost (OAC)

OAC=PTE +ATE (46)

which is the sum of the PTE and ATE.

Table 3. Comparison results of example 2.

Method ATE PTE SSI ACE OAC

Proposed 2.4347 ↓ 7.4813 ↓ 10.1115 1.9123 ↓ 11.828 ↓

NZS 3.7580 36.0246 4.9888 3.8669 42.8494

Shared 3.2714 20.6823 33.1272 4.5526 28.5062
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(f)Attitude
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(g)Angular velocity
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(i)Triggering rule

Fig. 14. Tracking performance of the proposed method.

The detailed comparison of the performance is shown
in Table 3, where the proposed cooperative game-based
shared optimal control algorithm achieves the best perfor-
mance in terms of the ATE, PTE, ACE, and OAC met-
rics. Compared with the existing MDA method, the pro-
posed cooperative control algorithm improves the ATE ma-
trices by 25.58%, the PTE matrices by 63.83%, the SSI
matrices by 69.48%, the ACE matrices by 57.99%, and
the OAC matrices by 58.51%. Compared with the existing
NZS method, the proposed cooperative control algorithm
improves the ATE matrices by 35.22%, the PTE matrices
by 79.23%, the ACE matrices by 50.55%, and the OAC
matrices by 58.51%. It should be noted that although the
’NZS’ method achieves a better performance in terms of the
SSI metric than the proposed method, the ’NZS’ method
doesn’t achieve stabilizing within the set time Tend un-
der the same ADP parameters setting, and the proposed
method achieves a better performance in terms of the SSI
metric than the existing MDA method, which means the
proposed controller is much more smooth and efficient in
controlling the UAV system than the MDA method.

Fig. 15. 3-dimensional trajectory of the UAV system.

6.3. Tracking performance

An tracking control simulation is conducted to verify the
tracking performance of the proposed cooperative game-
based shared optimal control algorithm. In this example,
the desired trajectory of the UAV is set as a circular path
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with fixed height:

xd = 2 cos(0.4t) (m)

yd = 2 sin(0.4t) (m)

zd = −1.5 + 0.005t (m)

(47)

The simulation results of tracking performance are
shown in Fig. 14-15. To demonstrate the tracking capa-
bility, both step responses and circular trajectory tracking
scenarios are examined. The tracking error shown in Fig.
14(c) demonstrates fast convergence and remains within
0.2m during steady-state tracking. The critic NN weights
(Fig. 14(a)-(b)) exhibit stable convergence within 5 sec-
onds, while the system states (Fig. 14(d)-(f)) maintain
bounded trajectories throughout the 30-second simulation.

The dynamic event-triggering mechanism (Fig. 14(f))
effectively reduces computational load while preserving
control performance. The 3D trajectory tracking result in
Fig. 15 shows the UAV successfully following the desired
circular path with a maximum position error of 0.18m. The
tracking result confirms the effectiveness of the proposed
cooperative shared control scheme in coordinating human-
UAV interaction while maintaining precise trajectory track-
ing. The simulation validates that the proposed method can
achieve efficient trajectory tracking while maintaining com-
putational efficiency through event-triggered control and
continuous human-automation cooperation.

7. Conclusion

In this paper, a cooperative game-based shared optimal
control algorithm is proposed for the UAV system control,
where an optimal shared control input is derived by the
cooperative game-based shared optimal control algorithm.
The proposed method establishes a non-zero sum game be-
tween the human operator and the shared control input,
where the human operator and the shared control input
are obtained by the actor-critic neural networks. An inno-
vative shared mechanism is proposed to achieve coopera-
tion between the human operator and the shared control
input continuously and efficiently. The proposed method is
verified by numerical simulations, where the proposed op-
timal shared control algorithm could achieve up to 79.23%
improvement compared with the existing MDA methods,
and the computational complexity is reduced by 75.33%
compared with the existing time-triggered methods. The
future work will focus on the real-world implementation of
the proposed cooperative game-based shared optimal con-
trol algorithm.
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